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HIGHER ORDER ANALOGUES OF CLASSICAL GROUPS

R. H. BOWMAN & R. G. POND

1. Infroduction

In [2] and [3] one of the present writers introduced a notion of canonical
tangential resolution (*M) (k = 0,1,2, --.) for an arbitrary real C= finite-
dimensional manifold M. Subsequently, various aspects of the higher-order
terms of such a sequence have been investigated (see [4], [5], and [6]). While
the local origins of the theory are to be found in the formalism of extensor
analysis (see [7] as a general reference), the categorical context is co-equaliza-
tion in the general theory of cotriples, the basic cotriple being the zero-section
and the tangent functor in the category of C~ manifolds (see [9]).

The present paper concerns the resolution (*G) of a Lie group G and the
resolution (*¢) of a differentiable action ¢ of G on a manifold. The principal
results are the theorems in § 2 establishing matrix realizations for each *G and
its associated Lie algebra #(*G) and interpreting the relevant exponential map
in the case where G is a Lie subgroup of some general linear group. The in-
formation developed here yields the foundation for a general theory of differ-
entiable fiber bundle resolution and its interpretation, a systematic treatment
of which will be given in later papers. The remainder of the introduction ex-
plains the notational conventions and special identifications used in the sequel.
All manifolds are modeled on real Banach spaces and are at least of class C=.
The notation is intended to conform as closely as possible with that currently
employed in such a context (see [1], [8], and [11]).

Let M be a manifold modeled on the Banach space B. An element of the
tangent bundle T(M) will be viewed as an equivalence class [4, b],, where
beB, xeM, and @ is a local coordinate map about x. Thus, if ¢: M — N is
a differentiable map, its associated tangent map T(¢) : T(M) — T(N) is described
locally by

(1) T(@)18, b)) = [y, Do g0 67)O(B], ,

where ¥y = ¢(x),  is a local coordinate map about y, and D(yr o ¢ o 7)(@(x))b
is the total differential of W o o 4" at the point #(x) evaluated at the vector b.
When V is an open set in a Banach space C, 7(V) will be viewed as the direct
product ¥ x C with (»; ¢) denoting a tangent vector ¢ € C located at the point
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v ¢ V. In particular, given 8 as above, T(6)([4, bl,) = (8(x); b), i.e., T(9) is
the usual lift of 4 to a local coordinate map on T(M). If M is a direct product
K x L, T(M) will be treated as T(K) X T(L). In particular, if ¢: M — N is
a differentiable map, let ,¢: L — N and ¢,: K — N be given by

2P(V) = P(u, v) = ¢,(u) for each (u,v) e M .
In this case formula (1) becomes

T(p)lz, aly, [y, dl) = T($,)(I7, alw) + TGy dl)
= [V, D(yo gy, 0z ) z()a + D(¥o .oy )(p(v)d],

where [¢, al, € T(K) and [y, d], e T(L).

Following [2], the tangential resolution (*M) for a manifold M can be specified
inductively. Let ‘M = M, 'M = T(M), J = the identity map ‘M — T("M).
For k > 0, suppose *M and **'M have been defined together with an embedding
I ¥VM — T(EM). Let o*: T(*M) — *M and =**': T(***M) — ¥*'M denote
the usual projections and let ;o = n*o,l. Then **?M is defined as the set of
all points in T(***M) where I o z**' and T(,x) agree and .,/ : ***M — T(**'M)
denotes the inclusion map. With tangential resolutions of manifolds thus
defined, let ¢: M — N be any differentiable map. The tangential resolution
(*¢) for ¢ can be specified as follows: let °9 = ¢ and, assuming “¢: *M — *N
has been defined, let ¢***: ¥*'M — k"IN be J~'c T(¥$)o,I where I and ,J
are the embeddings of **'M and **:N in T(*M) and T(*N), respectively. It
is readily seen that the resolution process for manifolds is functorial at each
level k. /

When V is an open set in a Banach space C, #*'V will be treated as the direct
product ¥V X C**! with the embedding map **'V — T(*V) = (V x C¥) X C**!
given by sending (v,, « + -, V5, ) t0 (¥4, - -, Vg Uy, - - -, Vi ,1). Local coordinati-
zation of the point-set ¥*'M is achieved through functions of the form **'¢
where ¢ is a local coordinate map for the manifold M. If M is a direct product
K x L, ¥*'M will be treated as *"'K x **'L. In particular, if ¢: M — N is
any differentiable map, **'¢: ¥*'K X **'L — ¥*IN is given locally by

(2)

(3) *79(x, 2) = WJ (U, DO s 5,0 527 )W1 + DCF o g0 457N ()],

where s = (S, «++, i), £ = (81, <+ +, Sp,), X = ¥Pe™sg, « -+, 54 ,0), U = FT7H(s),
q= (qo, R qk), F= (ql’ R qk+1), Z = k+177—1(q0, Y qk+1)a V= k77“1(f1),
and y = *¢(x, z).

Before passing to Lie considerations, an alternate description of the sequence
(*M) can be given which suggests the rationale for its consideration. Let
T°(M) = M, and for each integer k >0 let n, = T(=,): T**'(M) — T*(M)
denote (inductively) the tangent bundle over T#(M). For each £ > 1 and each
m from 1 through %, let T™(x,_,): T** (M) — T*(M) denote (inductively) the
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tangent map associated with 7"~!(z,_,.). For each & > O the various T™(7:_.,,)
(0 < m < k) are all distinct, and **'M can be viewed as precisely that subset
of T#*'(M) on which all the T™(x,_,,) coincide.

Now suppose ¢ = ¢'¥: I — M is any differentiable curve in M. Let
g‘**v 1 I — T**(M) denote (inductively) the standard lift of ¢'*’ over z,, £ > 0.
One readily checks that ¢'**¥ actually has its range in the (losed embedded)
submanifold ¥**'M. Thus higher order ordinary differential equations over M
are properly formulated as given data relative to the *M rather than the ambient
T*(M). Recognition of this phenomenon is tacit in the standard treatment of
sprays, for instance, at the second tangential level (see [11] or [13]). A similar
situation occurs in other higher order differential contexts as well.

Let G be a (Banach modeled) Lie group with multiplication ¢ and inversion
¢. With the conventions on products in mind, one checks that each *G is again
a Lie group with multiplication *¢ and inversion *;. Moreover all the global
maps involved in the construction of “G as-a manifold are Lie group homo-
morphisms. If ¢: G x N — N is a differentiable (left) action of G on N, then
each *¢: *G x *N — ¥N is a differentiable action of *G on *N, and the sequence
(*¢) is called the tangential resolution of ¢. In particular, if N is a Banach
space and ¢ preserves the linear structure on N, then *¢ preserves the linear
structure on *N (viewed as N**).

We close this introductory section with a decomposition theorem for *G.
Let K, be the trivial subgroup of G and let G, = G. For k> 1 let K, =
ker (mo -+ 0o, ,w) and let G, be the subgroup of “G consisting of those x for
which ,_,/(x) is the zero tangent vector at ,_,z(x).

Theorem 1. * For each k > Q the restriction of ,r to Gy,, is a Lie isomor-
phism onto G, and n(K,,) = K,. In particular, each *G is the iniernal
semidirect product K,G,.

Proof. Letting O, denote the restriction of the zero section of z* : T(*G)— *G
to G, one checks (inductively) that ,/~'o O, is the inverse of the restriction of
«7 10 Gy,,. Clearly ,n(K,,,) € K. Thus (inductively again) each K, 1 G, is
trivial. To see that K,G, is all of *G for £ > 1, let x ¢ *G be arbitrary and
let g7 = ywo -0, _w(x) € G. Letting y be the element of G, for which
oo+ o, m(y) = g ' and letting ¢ denote multiplication in G, one has x =
*u(F(p)(x), ¥) with *(z,)(x) necessarily in K.

Corollary. Let #(*G) denote the Lie algebra of *G. Then ¥(*G) is the
internal semidirect product #(K,) ® .Z(G,) of the ideal #(K,) with the sub-
algebra 7(G)).

2. A matrix realization of *G

Let B be a Banach space, GL(B) the Lie group of all continuous automor-
phisms of B, and gi(B) the Banach algebra (and Lie algebra) of ali continuous
linear endomorphisms of B. For & > 0 each S ¢ g/(B**') will be treated as a
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(k + 1) x (k + 1) matrix [S;7] (0 < i,j < k) with lower index = row index.
(That is, given §, the various §;’ € g/(B) are obtained by requiring S(v) =
(2857 (;), - -, 2867 (vy) for all v = (v, - - -, v,) € B¥*1.) For the remainder
of the paper G will be a Lie subgroup of GL(B), and ¢: G X B — B will
denote the usual left action of G on B. Thus the map x — ,*$ amounts to a
realization of *G as a Lie subgroup of GL(B**!). Our purpose in this section
is to characterize the matrices [,%¢;/] which arise in this realization. In the
process we obtain a characterization of the matrices which arise in the corre-
sponding realization of #(*G) in gI(B**') as well as an interpretation of
kexp: *¥(G) — *G as an ordinary exponential map, where exp: £(G) — G
is the restriction to .#(G) C gl(B) of the usual exponential map.

Theorem 2. Let C(i,j) = i'/[(0 — D!j!l when O < j < i< k. Then ,*¢;
= C(, )" 2 when 0 < j<i<k, and ,*¢;7 = 0when 0 <i<j<k.

Proof. It is sufficient to consider the case G = GL(B). We argue by in-~
duction on k, the case k = O being trivial. With K = G, L. = N = B, v = the
standard injection G — gI(B), ¥+ = 5 = the identity on B, and the convention
that J(by, « -, by,) = (bg, -+ -, b3 by, - -+, by, and in mind, formula (3)
amounts to

(4) Eg(x, 2) = J(FP(u, v) 5 D(Fgy 0 kst 4+ D)) .

Now D(,*¢)(@)r = ,*¢(r), since ,*¢ is a continuous linear map. Thus, by the
inductive hypothesis for k, one has

DG ) q)r = (C(O, 0)5(g), C(1, 0)s:(g) + C(1, Dsy(gy),

(5) '
ooy 20k, D5 (g540) -

Define a continuous linear map F:gl(B)**! — B**! by

F(Ey, - -+, Ex) = (C(0,0)E\(g,), C(1,0)E(q,) + C(1, DE(q,),
ey, ch(kaj)Ek—j(qj)) .

By the induction assumption, the restriction of F to G X gI(B)* is precisely
kg, 0 ¥z71. Thus one has

(6) D¢, o *e7) ()t = F(s;, -+ +5 S41) -
Since C(, /) + C(G,j+ 1) = CGE + 1,j + 1), formulas (5) and (6) yield

(*é(u, v) ;5 D(*¢, 0 27Nt + DGFEN@T) = (F(so, -+ -5 51) 5 C(1, 0)51(g0)

7
7 + C(1, Dsi(q), - -+, 2,0k + 1, D8%,1-5(4,)) -

Apply ,J! to both sides of (7) to obtain (from (4))
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#g(x, 2) = (C(0, 0)55(q0), C(1,0)s:(qs) + C(1, Dsolqy),

(8) j
. ,ZJC(k + l’])skﬂ—j(qj)) »

which completes the induction.

Theorem 3. Let k> 1. If ue G, and 0 <i< k, then ,*¢," = 0. More-
over, for each s, e G there is exactly one ue G, with ,*¢" = s,. For any
uek,, ¢, is the identity element I ¢ G.

Proof. Forany u € *G, ,*@," = w0+ -+ op_w(u). So the assertion for u € K,
is immediate from the definition of K, while the assertion about ,*¢, for
u e G, follows because (by Theorem 1) 7o - - - o ,_,x carries G, isomorphically
onto G. For i > 0 and u = (s,, - - -, s¢) in GL(B) X gl(B)* = *GL(B), u € G,
implies s, = - -+ = 5, = 0. Thus ,*¢," = 0 follows from Theorem 2 and more
precisely from the formula

£ “P(1) = (C(0, 0)s,(q,), C(1, 0)si(q)) + C(1, Dsy(qy),
Tty ch(ka ]')sk-j(q.‘i+l)) .

Now let ¢,, denote the realization of *G in GL(B**"), i.e., let ¢,(x) = [,*¢,7],
and let L(¢:) : L(*G) — gl(B¥*") denote the corresponding realization of the
Lie algebra 2(*G).

Theorem 4. The image of ¥(¢,) consists of all matrices [A;'] with each
A7 e L(G) C gl(B) satisfying A;? =0 for i <j and A = C(,)A;_,° for
i <i. Such a matrix corresponds to an element of ¥(K,) iff A = 0. Such a
matrix corresponds 1o an element of ¥(G,) iff A, = 0 for all i > 0.

Proof. Let U and V be open neighborhoods of O and I, respectively, in
Z(G) and G such that the exponential map exp: U — V is a diffeomorphism.
Then *exp: *U = U X £(G)* — *V C *G is also a diffeomorphism for all k.
Viewing *G C *GL(B) = GL(B) x gl(B)* one has ¢,(A,, ---,Ay) = [4,7],
where 4, = A;. Let f: U — GL(B) be given by f(r,) = exp (r,).

Simply because f is a differentiable map from an open set in a Banach space
to an open set in another, one readily checks that *f: *U = U X £(G)* —
*GL(B) = GL(B) x gl(B)* is given by

(9)

(10) kf(roa M 'ark) = (fo(ro)af1(r0ar1)a i 'afk(rm n ‘ark)) ’

where f, = f and f;(r,, - -, #) = D(f;_ )y, <+ -5 Fs_)(ry, -+, 1) for all i > 0.
Now the range of *f is actually *¥. The Lie algebra determinations are made
by passing curves v = (y,, - - -, v;) through the origin in *U and differentiating
¢ o *fow at O ¢ R. Observe that, for all i = O, - - -, &, one has

an DFXO, -+, 0)A4,, -+, 4) = A, .

(Actually, as one checks inductively f,(O, -..,0,4,,0,.--,0) = Oforj<i
while f,(0, - --,0, 4;) = A;. In particular, D;_,(f)(O, -.-,0)A;, = Oforj<i
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Whlle D'L+1(fz)(oa M) O)Az = Ai' Thus D(f?,)(oa M) O)(Atn Tty A‘I) =

2,D;,,(f)O, -..,0)A4; = A,.) On the other hand, since ¢, is the restriction
of a continuous linear map gi(B)*** — gl(B**'), one always has
(12) D(¢k)(Xo, v ka) = ¢k .

So, for any curve v through the origin in *U, the chain rule and (10), (11),
and (12) yield

(13) (¢r 0 *f0)(O) = (' (0), -+ -, 1/ (O)) .

The matrix indicated in (13) is clearly of the required general type, and any
such matrix [4,7] can be obtained by letting v = (y,, - - -, v;) where the curves
v; with values in #(G) are chosen such that v,”(O) = A4,° holds for each i. By
Theorem 3, ¢, o *f o v takes values strictly in ¢,(*¥ N G;) provided »; = 0 for
all i > 0O, while ¢, o ¥f oy takes values strictly in ¢,(*V N K,) provided v, = 0.
This accounts for the splitting of the images of #(G;) and #(K,).

The task remains to fully describe the entries x*¢,” (i > 0) which can arise
in ¢.(x) for x ¢ K;. Letting exp,: gl(B**") — GL(B**') denote the ordinary
exponential map, one knows that its restriction to #(¢)(L(Ky)) is just the
exponential map over ¢,(K;). We shall establish that this restriction is actually
a diffeomorphism. This completes the task for, in view of Theorem 4, the re-
striction of exp, to L (¢ }(F(K,)) is quite easy to compute and yields a sharp
description of the matrices *¢,°.

Theorem 5. Treat *gl(B) = gl(B)**! as the tangent space ai the identity in
*GL(B) = GL(B) x gl(B)tvia(A,, -+ -, Ay) — U, 0, -+ +,; Ay, + -+, Ay). Then
the exponential map over *GL(B) is just *exp: *gl(B) — *GL(B), where
exp: gl(B) — GL(B) is the usual exponential map.

Proof. The proof reduces inductively to the following result.

Lemma. Let V be any Banach space. Then ‘'exp: gl(V) = gl(V)* —
IGL(V)Y = GL(V) x gl(V) is the exponential map over ‘GL(V). Thus, for any
Lie subgroup H in GL(V), Y(expPleun): ‘¥ (H) -— 'H is the exponential map
over ‘H, where £ (H) is identified with its image in 'gl(V) = gl(V')%.

Indeed, the lemma handles the case & = 1 in the theorem. Moreover, as-
suming the conclusion of the theorem holds for & arbitrary, the inductive step
to k + 1 is accomplished by letting H = *GL(B) C gl(V) in the lemma with
V f— Bk+l'

Proof of lemma.. Only the first assertion requires proof. For convenience,
transfer ‘exp: 'gl(V) = gl(V)? — 'GL(V) = GL(V) x gl(V) to the matrix map
'Exp: @) LCGL(V))) — ¢,(GL(V)) defined so as to satisfy ¢, o'exp =
'Exp o #(¢,). Thus 'Exp is given by

as B (| )(()D:[g(?eg))()()(i’) ex;)(X) '
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To see that 'Exp is the required exponential map, i.e., that the restriction of
the standard exponential map gl(V*) — GL(V?), it suffices to check that each

curve »(?) = 'Exp ([:); tg(]) satisfies the differential equation

(15) V(1) = (1) < v(O) .

Now the curve 7 — exp (1X) satisfies the differential equation

(16) (d/dr) (exp (1X)) = exp (1X) o (d/d1)|,_, (exp (1X)) = exp (tX) o X .
Also by the chain rule one has

(17)  (d/dD(D (exp) (1X)(tY)) = D*(exp) (X)(Y, X) + D (exp) tX)(Y) .
Thus

gy () = [ exp(tX) < X 0 ] .
D! (exp) (X)(1Y. X) + D (exp) (X)(Y)  exp (1X) o X

In particular, one has

o[t

and therefore

Oy — exp (X)X 0
20) (1) < (O) [D (exp) ((X)(tY) o X + exp (tX)o Y exp (1X) oX] '

Thus comparing (15), (18) and (20) we must show

D?(exp) ¢X)(tY, X) + D (exp (¢X)(Y)

@1 = D (exp) ((X)(tY)o X + exp (tX)o Y .

To verify (21) we resort to the classical formula
(22) D (exp) (A)(B) = exp(A) o}, ((—ad (A (BY)/( + D! .

(Formula (22) is well known in the finite-dimensional case; see [12, p. 95]
for instance. It is probably also standard in the general Banach setting; see
[10, p. 89] for an indirect reference. At any rate, the formula can be checked
directly.) By (22) one has

D (exp) (tX)(Y) = exp (tX) o (Y + 30 ((—ad (X))(Y)) /(G + D)

23
3) =exp(tX)oY + exp (tX) o ()]0, ((—ad ¢X))(Y) /G + D) .
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Also by (22) one has

D (exp) (X} (tY)o X

@4 — (exp (1X) o (X 1o0 (—ad OV /G + D)o X .

Comparing (21), (23) and (24) we must show

D* (exp) (1X)(tY, X)
25) ‘ ,
_ (—ad ¢ X))’(1Y)  _ (—ad (¢1X))(Y)
"exP(tX)c’;g( G+ D! X =263 DI )

Let p = (p,, 0,): 8l(V) — Endj (gl(V))* be given by p,(A) = o5, 4zt = left-
multiplication by exp(A4) and plA4) = 3., (—ad )/ + D! Let
S: End z(gl(V))* — End »(gl(V)) be given by S(L,,L,) = L, oL,. Then from
(22) it follows that

(26) D (exp) = So o -
Thus by the chain rule and bilinearity of S one has

D? (exp) (A)(B, C) = (D(p)(A)B))(o:(4XCD)

27
@D + (@A ANUD(eI(A(BN(C)) .

Now D(p)(A)B) = p exp caympt» While term-by-term differentiation and the
chain rule yield

D(p)(AXB) = %, ~(]_L::~11))j—'(ad (B)o(ad(A4)) ' 4 - -+ + (ad(4)) o ad (B)),

there being j terms in each internal sum on the right corresponding to the
various possible placements of ad (B). So (27) can be rewritten
D?(exp) (4)(B, C)
(ad (4))(C)
= D (exp) (4A)(B) o T St Shal £
(exp) (A)(B) f;( ) Gt D!

+exp()e (g T @dB)ead (p + -

= G+ D!

+ (ad (4))?~ o ad (B))<C)>) .

(28)

In particular, one has
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D* (exp) ((X)(tY, X) = D*(exp) (1 X)(X, tY)

— (—ad (LX) (1Y)
(29) = exp (tX) ojgo G o X

' (=17
+ [X z (] A @dax) (zY)]

; ;- (ad (X) o (ad X))~

1)
+ (ad (1X)) o ad (X)H(Y)) ,

where [ , ] denotes the usual Lie bracket. But (29) is just (25) as required since

(—1)? ; _ (—1)7* b
[ 5 @] =[x, 5 S adaoy-an)

= () (S0 (D106 (10) )
=5 5D @awxyr) = 2-(7-‘]-.»}?—1 (ad (LX)A(Y))

izl ] e

~ _ . =D ) ;__<:_LL j
= - T (ad (tX)XY) + X Y i (ad (£X))(Y))

= — (L2 (DG + D) (ad (£X))7 (Y)

+ 5D @d @) o (ad ) +
A+ DY

+ (ad (£X)) ™! 0 ad (X))(tY)) .

So the proof of the lemma is complete.

Theorem 6. Again let G be an arbitrary Lie subgroup of GL(B), let exp
denote the restriction of the usual exponential map to ¥(G) C gl(B), and let
expy : gl(B**") — GL(B**') denote the usual exponential map. Then the re-
striction of expy to L(d)(L(Ky)) is a diffeomorphism onto ¢,.(K,).

Proof. Choose open sets U and V¥ about the origin in #(G) and the identity
I in G, respectively, such that the restriction of exp to U is a diffeomorphism
onto V. Then *exp is a diffeomorphism of *U = U x £(G)* onto *V. But
K. C ¥V, whence #(K;) C *U because Z(¢ L (K,)) C Z(¢:)(EU). Thus
kexp restricts to a diffeomorphism from #(K,) onto K,. Now by Theorem 5
and the naturality of exponential maps one knows ¢, o “exp = exp; o F(¢y).
Thus the proof is complete.

Example 1. Let G be an open subgroup of GL(B). Using the functions
fos - +» fx introduced in the proof of Theorem 4, one can sharpen the results
of Theorem 2 directly to conclude that ¢,.(*G) consist of all matrices [H,’] such
that H' e G, H,e £(G) for i > 0, H;? = 0 fori <j, and H; = C(@, j))H;_,
for j < i. Still, G serves to illustrate the rest of the machinery developed. Let
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g 0 O
k = 2 for instance. By Theorem 3 one knows ¢,(G,) = {[O g O} 1g¢ G}.

From Theorem 4 it follows £(¢,)(Z(K,)) = {[E 0 0} E, Fe f(G)}. B
2E 0

Theorem 6, ¢,(K,) = exp, (L(g)(Z(K,)). Now

0 0 0 0 0 O (I 0 O
explE 0 of=x 1 lE o0 o ={0o 10
F 2 o] 2D J|F 2E 0 0 0 I

[0 0 O] 0 0 0
E 0 04+1]0 0 O
0

...l_
|F 2E O E? 0
[ ] 0 0
= E I 0],
F+ E* 2E I
0 0 0] 0 0 0
since j >3 implies {JE 0 O =10 O O]f. Thus
F 2E 0 0 0O
I 0 0
6, (K,) = E I O}:E FeZ(G); .
F+ E 2E [
By Theorem 1,
. g 0 0
3,(*G) = Eog g 0|:E,Fe 2(G),g¢G;} .
(F+ E)og 2E0g g

Example 2. If G is not an open subgroup of GL(B), the subdiagonals may
contain entries in neither G nor Z(G).

Let G be the group of proper orthogonal transformations in the plane.
(G =0%(2) =50(2) =T"= 8" = ....) Graphically, one can interpret G as
the unit circle and 'G = 7(G) as the family of all tangent lines at points on
the unit circle. Now #(G) consists of all skew-symmetric matrices

A= [O _8] where a ¢ R. Of course

a
O R e e IR
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Since L(g)(Z(K,)) = {[?4 8] e z(G)},

,(K)) = exp, (ZG)(LK)) = {[f ‘[’] i A 20) .

Thus ¢,('G) = ¢,(K))$(G) = {[fB g] A e PG),Be G}. Treat the points

in the plane (i.e., the complex numbers) as all 2 x 2 real matrices of the form

[; —;’ ] (corresponding to the number x 4 iy). Then, for fixed

g) —sin(@ L .
= [(3:10115 ((0)) ch; Eﬂ;] ¢ G, {AB: A e ¥(G)} is just the line through the

“origin parallel to the tangent line at B, and hence the subdiagonal term can
be any complex number.
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